Теплотехнический расчет (пример, программа, калькулятор онлайн).

Точка росы. расчет, определение

а также примеры расчета. Бесплатная программа-калькулятор +Добавить в избранное

Внутри
МатериалТолщинаR, кг/м3L, Вт/m/Kµ, min/max C, Дж/кг/К
1.см.
Снаружи
ТемператураВлажность
Выберите материалы вашей ограждающей конструкции

Случайные расчеты посетителей:

Материалы Сосна Экст.пенополистирол Сосна

Материалы Гипсокартон Слой воздуха Пароизоляция sd=2.3 Минеральная вата Ветрозащита sd=0.1 Черепица с обрешеткой

Точка росы

Причина №1. Высокая паропрозрачность внутренних слоев конструкции позволяют создать большое давление водянных паров в прохладных и холодных слоях конструкции, что, как я уже писал, приведет к повышенной конденсации.

Решение проблемы точки росы

Добавьте слабо проницаемых слоев внутри (пароизолцию) и/или добавьте вент зазор снаружи. Эта мера позволит сдержать поток водяных паров сквозь стены. Но не стоит переусердствовать т.к запертые пары внутри комнаты будут копиться и это приведет к ухудшении качества воздуха внутри помещений.

Если условия эксплуатации здания особенно суровые (-20 и ниже), то стоит рассмотреть возможность принудительного поступления в помещение подогретого воздуха с помощью теплообменников или нагревателей. Это позволит использовать герметичные пароизоляционные материалы без риска испортить микроклимат в доме.

Как выполняется расчет теплопотерь?

Расчет теплопотерь определяется на основании температуры внутреннего воздуха, температуры внутренней поверхности ограждающей конструкции и температуры уличного воздуха.

Температура внутри стен меняется линейно. Угол наклона графика зависит от значения термического сопротивления материала в разных его слоях.

Усредненное значение сопротивления теплопередачи внутри здания принимаем Ri = 0,13 м2 К / Вт. ГОСТ 8.524-85 и DIN 4108

Термическое сопротивление остальных слоев Re соответствует перепаду температур между внутренней поверхностью стены и уличным воздухом. (Т поверхности стены – T за пределами здания ) dTe.

Затем по следующей формуле:

Ri / dTi = Re / dTe

Re = Ri * dTe / dTi

Общее тепловое сопротивление R = Re + Ri

R = Ri (1 + dTe / dTi)

И, наконец, значение теплопотерь

Температура в помещении: 20 ° C
на поверхность стены: 18 ° C
температура окружающей среды: -10 ° C

dТ = 2 ° C
DTE = 28 ° C
Ri = 0,13 м2 К / Вт

dТi = 2 ° C
dTe = 28 ° C
Ri = 0,13 м2 К / Вт
R = R (1 + dTe / dТi) = 1,95 м2 К / Вт

ТеРеМОК 0.8.5 Теплотехнический расчёт многослойных ограждающих конструкций

Чигинский Дмитрий Сергеевич

размещено: 12 Сентября 2006
обновлено: 27 Апреля 2009

Программа предназначена для выполнения теплотехнического расчёта многослойных ограждающих конструкций и проверки теплотехнических характеристик многослойных конструкций.

Официальный сайт: http://dmitriy.chiginskiy.ru/teremok/

Wiki по программе ТеРеМОК: http://chiginskiy.ru/teremok/wiki/

Архив заменен на самораспаковывающийся архив, из-за ограничений сайта самораспаковывающийся архив лежит в простом архиве.

Журнал: http://dmit-chiginskiy.livejournal.com/
Электропочта: dmitriy@chiginskiy.ru

© 2005-2009 Чигинский Дмитрий Сергеевич. Все права защищены.

История версий:
ТеРеМОК 0.8.5 сборка 0118
27 апреля 2009 г.
*Добавлены новейшие теплоизоляционные материалы ТехноНИКОЛЬ, ROCKWOOL, ISOVER и KNAUF Insulation. В базу включались материалы с известными значениями коэффициентов теплопроводности по условиям эксплуатации А и Б;
*Обновлен интерфейс выбора населённого пункта, а также введена классификация по странам;
*Добавлены новые страны СНГ. Кроме России, Белоруссии и Украины, теперь доступны населённые пункты Азербайджана, Армении, Грузии, Казахстан, Молдавии и Туркмении. В базу SNiP_23-01-99.xml, также включены имеющиеся данные СНиП 23-01-99 по Киргизии и Узбекистану, которых не достаточно для выполнения расчёта;
*Исправлена ошибка на странице Отчёт, теперь результаты расчёта можно скопировать в буфер обмена, с последующей вставкой в текстовый редактор, для оформления и публикации. Функция копирования осуществляется с помощью контекстного меню — Клик правой мышью -> Выделить всё -> Копировать;
*Ограничение на значение температуры внутреннего воздуха t_int расширено до интервала от –100 до 100 °C;
*Значение продолжительности отопительного периода для Сочи установлено 152 сут.

ТеРеМОК 0.8.4 сборка 0114
31 октября 2008 г.
– Исправлена ошибка: при расчете наружных стен и покрытий промышленных зданий в отчёте в версии программы для Windows вместо значения нормируемого температурного перепада dtn выводилось NaN;
19 октября 2008 г.
– Реализован новый вариант отчёта;
– Добавлен расчёт суммарного теплового потока через 1 м2 конструкции (на основании п. 9.1.3. СП 23-101-2004 и таблицы 6 СНиП 23-02-2003);
23 августа 2008 г.
– Добавлен расчёт температуры и местоположения точки росы.

ТеРеМОК 0.8.3 сборка 0108
17 августа 2008 г.
– Исправлена ошибка из-за которой не правильно считалось Нормируемое значение сопротивления теплопередаче ограждающей конструкции Rreq для промышленных зданий;
– Уточнены требования для лечебно-профилактических, детских учреждений и домов-интернатов для престарелых, а именно средняя температура наружного воздуха и продолжительность отопительного периода теперь принимаются по СНиП 23-01 для периода со средней суточной температурой наружного воздуха не более 10 °С, в отличии от остальных случаях, в которых не более 8 °С;

ТеРеМОК 0.8.2 сборка 0102
9 августа 2008 г.
– Исправлено: в файле SNiP_23-01-99.xml отсутствовали города Украины и Белоруссии;
– Обновлен интерфейс 0 страницы — добавлены: Начните новый расчёт, Copyright; изменён: Загрузка программы на ТеРеМОК Теплотехнический расчёт многослойных ограждающих конструкций
– Улучшен интерфейс 1 страницы — обновлена таблица выбора влажностного режима помещения; обновлено дерево типов конструкций; добавлен расчёт перекрытий над холодным подпольем и холодным этажём;
– Оптимизирован интерфейс 2 страницы;
– Исправлена ошибка: корректная нумерация слоёв;

ТеРеМОК 0.8.2 сборка 0095
28 июня 2008
– Добавлена возможность расчёта перекрытий над холодными этажами и подпольями;
– Корректировка: Наличие или отсутствие потолка с выступающими рёбрами возможно только для типа конструкции покрытие;
– Корректировка интерфейса первой страницы;

13.06.2008 (сборка 0091)
– Исправлена ошибка: при расчете наружных стен и покрытий промышленных зданий в результатах вместо значения нормируемого температурного перепада dtn выводилось NaN;
– Отключена сортировка столбцов в таблицах, в которых она не требуется;
– Опубликован (http://dmitriy.chiginskiy.ru/teremok/userguide/adding_material.pdf) ответ на вопрос: Как добавить материалы в программе ТеРеМОК?
– Добавлено определение определение температуры точки росы по СП 23-101-2004 «Проектирование тепловой защиты»;
– Добавлена возможность расчёта производственных зданий с избытками явной теплоты более 23 Вт/м3, также откорректирован расчёт зданий с расчетной температурой внутреннего воздуха 12 °С и ниже;
– Введено ограничение на ввод значения расчетной средней температуры внутреннего воздуха здания в пределах допустимых по таблице 4 СНиП 23-02-2003 «Тепловая защита зданий», а также для производственных зданий по приложению Р СП 23-101-2004 «Проектирование тепловой защиты»;
– Введено ограничение на ввод значения влажности внутреннего воздуха для производственных зданий в пределах допустимых по приложению Р СП 23-101-2004 «Проектирование тепловой защиты» и для производственных зданий со значительными избытками явной теплоты более 23 Вт/м3 по таблице 5 СНиП 23-02-2003 «Тепловая защита зданий»;
– Обновлён алгоритм расчёта Rreq через коэффициенты a и b в соответствии со СНиП 23-02-2003 «Тепловая защита зданий»;
– Обновлена версия для Mac OS X (Universal).

22.01.2008 (сборка 0085)
– Исправлена ошибка: после установки в папке с программой появлялся не понятный файл TeReMOK.exe, которого там не должно было быть.

17.01.2008
– Добавлены города Украины;
– Добавлена возможность сделать пожертвование;
– Обновлено Руководство пользователя;
– Исправлена ошибка: при изменении расчетной температуры внутреннего воздуха (t int) она не изменялась;
– Добавлена версия для Mac OS X (PowerPC).

30.09.2007
– Обновлена структура меню;
– Исправлена ошибка, когда при смене населённого пункта Rreq не изменялся (именно из-за этого пункта, следует обязательно обновится);
– Уточнение: При вводе (изменении) расчётной температуры внутреннего воздуха, t int, и относительной влажности внутреннего воздуха, φ int, следует пользоваться стрелками вверх, для увеличения и вниз, для уменьшения параметра. Не следует вводить значения параметров с клавиатуры;
– Улучшена работа с таблицей материалы, теперь есть пункт показать Все группы материалов и/или Все подгруппы материалов.

22.06.2007
Обновлены данные по городам Республики Татарстан;
Исправлена ошибка с отображением принятого Rreq в отчёте.

17.06.2007
В список населённых пунктов добавлены города Республики Беларусь.

16.06.2007
Исправлены ошибки:
– При изменении города не изменялись условия эксплуатации (А или Б);
– Некорректная работа функции Печать.
Улучшение:
– Представление данных отчёта в форме таблицы;
– Увеличено оптимальное количество слоёв в конструкции с 3 до 5;
– Рекомендуемый формат печати – А4 c альбомной ориентацией;
– Правильная обработка слоёв, которые не требуются по расчёту;
– Написано Руководство пользователя.

05.06.2007
Теперь программа автоматически предлагает распаковать архив в “C:/Program Files/TePeMOK” и создает ярлыки в “Пуск/Программы” и на Рабочем столе.

Важно: При смене пути распаковки архива следует проверить, чтобы все символы были латинскими!

Для полного удаления программы следует удалить файлы по адресу распаковки, ярлыки и файлы по адресу “c:/Documents and Settings/Имя_пользователя/Application Data/Macromedia/Flash Player/#SharedObjects/########/localhost/Program Files/TePeMOK”.

Теплотехнический расчет с примером

Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП 50.13330.2012). “Тепловая защита зданий”. Актуализированная редакция от 2012 года [1].
  • СНиП 23-01-99* (СП 131.13330.2012). “Строительная климатология”. Актуализированная редакция от 2012 года [2].
  • СП 23-101-2004. “Проектирование тепловой защиты зданий” [3].
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). “Здания жилые и общественные. Параметры микроклимата в помещениях” [4].
  • Пособие. Е.Г. Малявина “Теплопотери здания. Справочное пособие” [5].

Скачать СНиПы и СП вы можете здесь, ГОСТ – здесь, а Пособие – здесь.

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое .

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна – 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком “Х”, так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.

Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

Примечание: также градусо-сутки имеют обозначение – ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,

где: Dd – градусо-сутки отопительного периода в Нижнем Новгороде,

a и b – коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

где: n = 1 – коэффициент, принятый по таблице 6 [1] для наружной стены;

tint = 20°С – значение из исходных данных;

text = -31°С – значение из исходных данных;

Δtn = 4°С – нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;

αint = 8,7 Вт/(м 2 ×°С) – коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λi – расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .

3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .

4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина “Теплопотери здания. Справочное пособие”):

где: Rint = 1/αint = 1/8,7 – сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 – сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;

ΣRi = 0,094 + 0,287 + 0,023 – сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт

Толщина утеплителя равна (формула 5,7 [5]):

где: λут – коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):

где: ΣRт,i – сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.

Из полученного результата можно сделать вывод, что

R = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае – это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Temper-3D

Теплотехнические расчеты в Temper-3D

Разделы сайта

Это официальный сайт программы «Temper-3D», которая предназначена для расчета температурных полей и приведенного сопротивления ограждающих конструкций зданий и сооружений.С помощью Temper-3D можно производить теплотехнические расчеты.

Вышла новая версия программы “Temper-3d” 6.14

Внимание, вышла новая версия программ (6.14.01) которая производит автоматическую дискретизацию на конечные элементы (КЭ). Достаточно произвести сколь-угодно грубую дискретизацию, отправить данные на сервер, который произведет автоматическое измельчение КЭ сети, причем измельчение произойдет только в местах, где это необходимо, т.е. результат расчета всегда будет корректен.
Данная версия идет под операционными системами Microsoft Windows, таких, как Windows 7, Windows 8.

Расчетная область до отправки на сервер. Всего 203 КЭ.

Результат полученный с сервера. Всего 40368 КЭ.

Теплотехнические Расчеты в Temper-3D позволяют узнать:

  • Сколько и какого утеплителя надо положить, чтобы стена не промерзла
  • Будет ли образовываться конденсат на поверхности окна, стены…
  • Температуру на любом участке конструкции
  • Какое R0 будет у всей конструкции. R0 необходимо для расчета теплопотерь через ограждающие конструкции, по этому значению рассчитывают мощность отопительных приборов

Вы хотите построить себе коттедж или дом, а как вы собираетесь его утеплять?

Скорее всего, вы доверитесь специалистам, которые проектировали ваш дом.
Дело в том, что ни вручную, ни по опыту, ни на калькуляторе невозможно выполнить трехмерный теплотехнический расчет.
Такой расчет можно выполнить только на компьютере, с помощью специализированных, имеющих сертификацию программ.

Поэтому обязательно задайте следующие вопросы:

  • Как и кем были произведены теплотехнические расчеты
  • Попросите результаты теплотехнического расчета
  • Какое R0 у каждой из стен
  • Какая минимальная температура и на каком участке

Можно положить больше утеплителя, но где получить гарантию, что его хватит?
Обычно промерзание происходит в углах и на стыках, куда не так легко положить утеплитель.
Если температура на поверхности будет ниже точки росы, то будет образовываться конденсат.
Конденсат вызывает плесень, обои отклеиваются, стена или потолок чернеет, может даже образоваться лед. А мокрая стена может потом треснуть.

Программа «TEMPER-3D» позволит Вам быстро и удобно решить проблемы теплотехнического расчета распределения температур в любом сечении ограждающей конструкции здания, определить ее приведенное сопротивление теплопередаче, составить документацию по результатам расчета.

окно с балконной дверью, с учетом нижнего этажа

Пример теплотехнического расчета трехслойной ограждающей конструкции

Результаты теплотехнических расчетов могут быть представлены в виде цветных температурных полей (изотерм), полученных по любому сечению ограждающей конструкции

Пример просмотра в Temper 3d 5 результатов теплотехнического расчета.

Программа может использоваться как для проектирования конструкций, так и для теплотехнического расчета теплопотерь в готовых конструкциях и сооружениях, что позволяет выработать наиболее приемлемые варианты реконструкций в целях повышения их теплозащитных свойств. Создан удобный графический редактор, используемый для разбиения области на конечные элементы и допускающий возможность использования косоугольных элементов. Он позволяет описывать ограждающие конструкции с включениями практически любой формы и тем самым общее время на проведение расчета существенно сокращается (для проведения одного расчета средней сложности требуется от 20 до 40 минут). Удобный интерфейс не требует особых
навыков для работы с комплексом.

В России не существует программ, кроме «Temper-3D», производящие расчеты МКЭ трехмерных температурных полей, в том числе нелинейных и нестационарных с фазовыми переходами. Программы МКЭ, разработанные в России, рассматривают только плоские и стационарные концепции, а эти задачи можно легко решить с помощью демо-версии программы «Temper-3D», которая бесплатна.

Достоинством программы является возможность быстрого изменения коэффициентов теплопроводности материала на отдельных участках рассчитываемой конструкции (проведение повторного расчета с другими материалами требует не более 3-5 минут).

Программа внедрена и успешно используется в ряде проектных организаций России и странах СНГ (Беларусь, Казахстан, Украина)

Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры

При эксплуатации здания нежелателен как перегрев, так и промерзание. Определить золотую середину позволит теплотехнический расчет, который не менее важен, чем вычисление экономичности, прочности, стойкости к огню, долговечности.

Исходя из теплотехнических норм, климатических характеристик, паро – и влагопроницаемости осуществляется выбор материалов для сооружения ограждающих конструкций. Как выполнить этот расчет, рассмотрим в статье.

Цель теплотехнического расчета

От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и перекрытиях.

Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.

Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.

Теплотехнический расчет ставит перед собой цели определить:

  1. Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
  2. Настолько полно обеспечивается комфортный микроклимат внутри здания?
  3. Обеспечивается ли оптимальная тепловая защита конструкций?

Основной принцип — соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.

На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.

Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Формулы для производства расчета

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием вентиляционной системы. Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Потери через ограждающие конструкции

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт, высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

  • А — площадь в м².
  • R — сопротивление конструкции теплопередаче.
  • dT — разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

Далее, высчитывают количество энергии, необходимой для компенсации потерь тепла, ушедшего как через ограждающие конструкции, так и через вентиляцию. Оно обозначается символом W.

Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N — длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q — комфортный уровень тепла в здании, S — площадь с отоплением в м². Числа 100 или 150 — удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать устройство вентиляции с рекуператором. Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его — 7 м, габариты в плане — 10 х 10 м. Материал вертикальных ограждающих конструкций — теплая керамика. Для нее коэффициент теплопроводности — 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи – 18⁰, внутри — 22⁰. Габариты стены — 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты — 0,04 Вт/мºС. Термическое сопротивление:

R1 = 0,51 : 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1 : 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 0.879 + 2,5 = 3.379 кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8 : 3.379) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25 : 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала — К=0,15. В этой ситуации теплопотери составят:

R = 0,22 : 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки — -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39 : 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича — 0,72.

R = 0,22 : 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39 : 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Строители и архитекторы рекомендуют обязательно делать теплорасчет при устройстве отопления для грамотного подбора оборудования и на стадии проектирования дома для выбора подходящей системы утепления.

Пример теплорасчета №4

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен экструдированный пенополистирол. Отделка конструкции — штукатурка с двух сторон. Структура ее — известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате — 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка — 0,01 м;
  • пенобетон — 0,2 м;
  • пенополистирол — 0,065 м.

Задача — отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП — это градусо-сутки сезона отопления, а и b — коэффициенты, взятые из таблицы №3 Свода Правил 50.13330.2012. Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот — 205 — отопительный период в сутках. Следовательно:

ГСОП = ( 20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП50.13330.2012, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Теплотехнические расчеты напрямую связаны с определением точки росы. Что это такое и как найти ее значение узнаете из рекомендуемой нами статьи.

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как теплотехнический расчет помог вам выбрать обогревательное оборудование нужной мощности или систему утепления. Не исключено, что ваша информация пригодится посетителям сайта.

Hello, world! / Теплотехнический расчёт для каждого

Доброе утро, добрый день, добрый вечер и спокойной ночи !

Наконец-то доделав работу, появилась возможность поприветствовать вас в сообществе “Лига Инженеров ПГС”, и пригласить вас поучаствовать в просвещении темы строительных расчётов для большой аудитории.

Disclaimer. ПГС = Промышленное и Гражданское строительство, если вы имеете отношение к данной сфере, и вам есть чем поделиться с нами, то добро пожаловать. Сообщество названо не в честь кафедры ПГС. Сообщество открыто для всех инженеров гражданского строительства и архитекторов.

И что-бы подать моим будущим коллегам, подам пример действием. Сегодня мы разберём часть темы “Хочу построить дом, но не знаю из чего”.

Наверное каждый, в чьей голове рождается мысль о строительстве своего дома, задумывается о том, из чего сделать стены, и если с материалом несущих конструкций люди определяются на основании своего кошелька или предпочтения по материалам, то вот с толщиной утеплителя большинство доверяет мнению диванных экспертов.”

Для самых вкрадчивых, все расчёты производятся по “СП 50.13330.2012 Тепловая защита зданий” если вы захотите мы разберём ручной расчёт, он легче чем кажется.

Есть 2 способа рассчитать толщину утеплителя.

Первый способ – программный, благо практически на каждый инженерный расчёт уже есть специальное ПО, однако пользоваться таким ПО не зная ручного принципа расчёта, крайне опасно.

Второй способ – ручной расчёт, он потребует чуть чуть внимательности, умения “гуглить” и считать на калькуляторе, и его мы рассмотрим, если вы в комментариях выскажете пожелание его увидеть.

И что-же опасного может быть в не правильно посчитанном утеплителе спросите вы ? Давайте разложим по пунктам в порядке возрастания неприятностей:

1. Вы заложите больше утеплителя чем нужно, и просто выбросите деньги на ветер;

2. Вы заложите меньше утеплителя чем нужно, и будите тратиться сжигать деньги пытаясь согреться;

3. Вы положите слишком мало утеплителя и “точка росы” заставит вас страдать от грибка и плесени в вашем доме, при этом счета за отопления будут только расти. (Из-за неё же крайне не желательно утеплять дом изнутри)

Так давайте приступим. и начнём мы, барабанная дробь со второго способа, самого простого, забить все данные в программу и получить ответ )

И на этом поприще безусловно лидирует прога под названием ТеРеМОК (очень легко гуглится, ссылок я оставлять не буду), и не спешите минусить меня за рекламу, прога бесплатная, денег не требует, сделана на чистом энтузиазме её автора, денег мне он не давал. Лично я пользуюсь этой прогой со второго курса универа, когда левачил по дикому курсовые по архитектуре. Собственно покажу как пользоваться программой:

Расчёт производится в 3 шага:

В поле 1 выбираете тип вашего здания или помещения, для коттеджа, или простого жилого дома, 1-й пункт соответственно;
В поле 2 вбиваете температуру, которую вы предполагаете поддерживать в помещении, температуру следует брать в соответствии таблицей 1 ГОСТ 30494-2011 “Здания жилые и общественные. Параметры микроклимата в помещениях”. Для жилых помещений установлено на уровне 20-22 градуса, в холодное время года.

В поле 3 выбираете режим влажности утепляемого помещения, нужно для расчёта точки росы, она должна выпадать за пределами несущих конструкций;

В поле 4 собственно район строительства;

В поле 5 что вы собираетесь утеплять.

На 2-м шаге нужно собрать вашу стену из предложенных материалов и нажать на волшебную кнопочку расчёт:

Поле 1 и Поле 2 представляет собой сортамент различных материалов, в целом этого каталога достаточно, для того что-бы проверить любую стену, но не пугайтесь если не найдете материалов с вашими характеристиками, их можно отредактировать вручную.

Поле 3 тип расчёта. Если вы подбираете толщину утеплителя, оставляете 1-й пункт, если хотите проверить уже существующую стену, выбираете второй пункт.

В поле 4 отображаются материалы которые вы выбрали, здесь вы должны указать их толщину. ВНИМАНИЕ! Слой который вы хотите подобрать нужно оставить с толщиной равной 0. Тут же вы можете поменять характеристику “Лямбда” если вы не нашли в каталоге материала с нужной вам характеристикой (Её указывают на сайте производителя для каждого теплоизоляционного материала).

В итоге нажав на кнопочку 5 вы получите толщину искомого слоя.

ТЫ сделал это ! Твой первый теплотехнический расчёт, дай пять бро ! Это было Леген. подожди подожди

Читайте также:  Полы по грунту. Устройство пола по грунту своими руками
Добавить комментарий